14 01-kmeans-app
Challenge 4
Run this shiny app. Screenshot the app with Petal_Length by Sepal_Width selected.
palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
"#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))
library(shiny)
#Let's remember what the dataset iris looks like
View(iris)
ui <- fluidPage(
headerPanel('Iris k-means clustering'), #This is the title
sidebarPanel( #This is the sidebar with buttons:
selectInput('xcol', 'X Variable', names(iris)), #xcol is the value, X Variable the label
selectInput('ycol', 'Y Variable', names(iris), #ycol is the value, Y Variable the label
selected = names(iris)[[2]]),
numericInput('clusters', 'Cluster count', 3,
min = 1, max = 9)
),
mainPanel(
plotOutput('plot1')
)
)
server <- function(input, output) {
selectedData <- reactive({ #We'll talk about reactives in a bit
iris[, c(input$xcol, input$ycol)]
})
clusters <- reactive({
kmeans(selectedData(), input$clusters)
})
output$plot1 <- renderPlot({ #This creates the plot that you want to see
#with dynamic changes
par(mar = c(5.1, 4.1, 0, 1)) #this creates the window position
plot(selectedData(), #The we plot the clusters from above with selectedData()
col = clusters()$cluster, #How many clusters
pch = 20, cex = 3) #Color and size default
points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
})
}
shinyApp(ui = ui, server = server)
#>
#> Listening on http://127.0.0.1:7043
Challenge 5
Run your own data with the above code. See if you can replace the numeric variables of the iris dataset with your own. Screenshot the results.